Acta Chim. Slov. 1999, 46(2), pp. 155-160

STRUCTURAL IDENTIFICATION OF TRANS-[Mo^{III}Br₂py₄]Br₃ (py=PYRIDINE,C₅H₅N)^{*}

J.V.Brenčič¹, A.N.Chernega² and R.Rotar¹

 ¹Fac.of Chem. and Chem.Technology, University of Ljubljana, P.O.Box 537, 1001 Ljubljana, Slovenia, jurij.brencic@UNI-LJ.SI
²Chem. Cryst. Laboratory, 9 Park Road, Oxford, OX1 3PD, United Kingdom

(Received 30.3.1999)

Abstract

Trans-[Mo^{III}Br₂py₄]Br₃ crystallizes in the orthorhombic, Pcnm space group, with a=7.670(2), b=22.063(3) and c=15.237(1)Å. Unit cell contains 4 formula units. Mo-Br and Mo-N(pyridine) bonds are 2.552(1) and 2.210(7), 2.222(8)Å. Trans located pyridine rings are staggered. Tribromide ion is symmetrical, but not linear. The compound is isostructural with trans-[Mo^{III}Cl₂py₄]Br₃

Introduction

Trans- $[Mo^{III}Br_2py_4]Br_3$ is the product of the oxidative decomposition of trans, trans- $[MoBr_2py_4][MoBr_4py_2]$ [1]. Several other halo-pyridine compounds of Molybdenum(III) are known. The first among them mer-MoX₃py₃ (X=Cl,Br) were prepared long time ago [2]. Later several compounds containing trans and cis- $[MoX_4py_2]^-$ and $[MoX_5py]^{2^-}$ (X=Cl,Br), were characterised [3,4]. Trans- $[Mo^{III}Br_2py_4]Br_3$ was expected to be isostructural with trans- $[Mo^{III}Cl_2py_4]Br_3$ [5], and the crystal structure analysis was undertaken to prove this hypothesis.

^{*}Dedicated to the memory of Prof.Dr.Jože Šiftar

Results and Discussion

Trans-[Mo^{III}Br₂py₄]Br₃ and trans-[Mo^{III}Cl₂py₄]Br₃ are the only examples of the monomeric coordination compounds in which four pyridine ligands are coordinated to molybdenum(III). Trans located pyridine rings are in staggered conformation. Almost identical cation geometry was found before in the structures of trans-[Ir^{III}Cl₂py₄]Cl.6H₂O [6], trans-[Rh^{III}Cl₂py₄][H(ONO₂)₂] [7] and trans-[Ru^{III}Cl₂py₄]- IH(ONO₂)₂] [8]. On the contrary pyridine rings in trans-[CrF₂py₄](PF₆) are in eclipsed conformation[9]. Eclipsed conformation was found as well in the cationic part of trans,trans-[MoX₂py₄][MoX₄py₂] [1].

Cation and anion are located on the two-fold axis. Mo-Br and Mo-N(pyridine) bonds have expected values around 2.55 and 2.20Å (see Table 3.). Molybdenum atom has octahedral coordination with octahedral angles close to 90° and 180° . Acute angles between the equatorial plane defined by molybdenum and two nitrogen atoms and the pyridine rings are 45.6(4) and $47.5(4)^{\circ}$. Pyridine rings are planar within 0.01Å. All bonds and angles are normal. Angles between the planes of the trans located pyridine rings are 86.0(4) and 93.8(4)Å.

The tribromide ion is symmetrical and close to linear. As observed before, large cations favour symmetrical structure [10]

Formula	$C_{20}H_{20}Br_5MoN_4$	Volume(Å ³)	2578.1(1)
Formula weight	811.86	$D_c(mg/m^3)$	2.09
Space group	Pbcn	$\mu(MoK\alpha)mm^{-1}$	8.19
Z	4	Indep.refl.	2261
a(Á)	7.670(2)	Observ.refl.	1234
b	22.064(3)	R, I>3σ(I)	0.045
c	15.237(1)	wR	0.054

Table 1. Crystal data for trans-[Mo^{III}Br₂py₄]Br₃

Fig. 1. ORTEP view of the molecule with the atomic numbering scheme. Displacement ellipsoids are plotted at the 30% probability level

Experimental

Trans- $[Mo^{III}Br_2py_4]Br_3$ was crystallized from the acetonitrile solution which was concentrated above sulfuric acid at room temperature. Yellow single crystals of square shape were used for X-ray structural analysis.

Enraf-Nonius CAD4 diffractometer and ω -2 θ scan mode was used for collecting the data. Reflections were corrected for Lorenz, polarization effects and absorption. Important crystal data are collected in Table 1. Tables 2 and 3 contain atomic positions and dimensions. Figure 1 shows cation and anion with the numbering scheme. The phase problem was solved by direct methods. All nonhydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in calculated positions and included in the final refinement with the fixed positional and displacement parameters. Crystallographic calculations were carried out using CRYSTALS[11] and NRCVAX [12] program packages.

Atom	Х	У	Z	Ueq
Мо	0.00	0.38507(5)	0.25	0.0330(2)
Br1	0.24819(2)	0.38553(5)	0.36161(7)	0.0514(3)
Br2	0.00	0.64161(7)	0.25	0.0625(3)
Br3	0.2131(2)	0.63952(7)	0.3768(1)	0.0874(3)
N1	0.133(1)	0.3135(3)	0.1740(5)	0.034(1)
N2	0.141(1)	0.4549(3)	0.1727(5)	0.036(1)
C11	0.305(1)	0.3167(5)	0.1588(7)	0.042(2)
C12	0.392(1)	0.2739(5)	0.1111(8)	0.051(2)
C13	0.301(2)	0.2257(6)	0.0772(8)	0.059(2)
C14	0.129(2)	0.2221(5)	0.0939(8)	0.055(2)
C15	0.046(1)	0.2664(5)	0.1418(7)	0.044(2)
C21	0.151(1)	0.4499(4)	0.0852(1)	0.044(2)
C22	0.242(2)	0.4909(6)	0.0357(7)	0.059(2)
C23	0.326(2)	0.5378(5)	0.0762(8)	0.062(2)
C24	0.318(2)	0.5422(5)	0.1649(8)	0.053(2)
C25	0.222(2)	0.5001(5)	0.2107(7)	0.055(2)

Table 2. Fractional atomic coordinates and equivalent displacement parameters(Å²). Ueq is defined as one third of the trace of the ortohgonalized Uij tensor.

Tables of observed and calculated structure factors, anisotropic displacement parameters and hydrogen atoms positions are available from the authors on request. Table 3. Selected geometric parameters (Å,°)

Mo - N1 2.210(7)	Mo - Br1 2.552(1)	
Mo - N2 2.222(8)	Br2 - Br3 2.531(2)	
N1 - Mo - N2 89.6(3)	N1 - Mo - N1 ⁱ 88.7(3)	
N1 - Mo- Br1 90.4(2)	N2 - Mo - N2 ⁱ 92.1(3)	
N2 - Mo - Br1 89.3(2)	N1 - Mo - N2 ⁱ 178.1(3)	
N1 ⁱ - Mo - Br1 89.9(2)	B r1 - Mo - Br1 ⁱ 179.55(6)	
N2 ⁱ - Mo - Br1 90.4(2)	Br3 - Br2 - Br3 ⁱ 177.91(9)	
Symmetry code: (i) -x, y, $\frac{1}{2}$ -z		

References

- [1] J. V. Brenčič, L. Golič, I. Leban, R. Rotar, J.Sieler, Z. anorg. allg. Chem. 1996, 622, 2124-2128.
- [2] A. Rosenheim, G. Abel, R. Levy, Z. anorg. allg. Chem. 1931, 197, 189-211.
- [3] D. W. DuBois, R. T. Iwamoto, J. Kleinberg, Inorg. Chem. 1969, 8, 815-819.
- [4] J. V. Brenčič, Acta Chim. Slov. 1997, 44, 131-141.
- [5] R. Rotar, I. Leban, J. V. Brenčič, Acta Cryst. 1996, C52, 2155-2157.
- [6] R. S. Gillard, S. H. Mitchell, P. A. Williams, R. S. Vagg, J. Coord. Chem. 1984, 13, 325-330.
- [7] G. C. Dobson, R. Mason, R. D. Russel, J. Chem. Soc. Chem. Commun. 1967, 62.
- [8] N. S. Al-Zamil, E. H. M. Evans, R. D. Gillard, T. E. James, T. E. Jenkins, R. T. Lancashire, P. A. Williams, *Polyhedron* 1982, 1, 523-534.
- [9] G. Fochi, J. Strähle, F. Gingl, Inorg. Chem., 1981, 30, 4669.
- [10] J. L. Atwood, P. C. Junk, M. T. May, R. D. Robinson, J. Chem. Crystallogr. 1994, 24, 243-245.
- [11] D. J. Watkins, J. R. Caruthers, P. W. Betteridge, *Crystal user guide*, Chemical Crystallography Laboratory, University of Oxford, 1985.
- [12] E. J. Gabe, Y. Le Page, J. P. Charland, F. C. Lee, P. S. White, NRCVAX-An Iteractive Program System for Structure Analysis, J. Appl. Crystallogr. 1989, 23, 384.

Povzetek

Trans-[Mo^{III}Br₂py₄]Br₃ kristalizira v ortorombski prostorski skupini Pcnm z a=7.67(2), b=22.063(3) in c=15.237(1)Å. V osnovni celici so 4 formulske enote. Razdalje Mo-Br in Mo-N(piridin) so 2.552(1) in 2.210(7), 2.222(8)Å. Piridinski obroči, ki so v trans položajih drug napram drugem, tvorijo med seboj pravi kot. Tribromidni anion je simetričen, vendar ni linearen. Spojina ima enako strukturo kot trans-[Mo^{III}Cl₂py₄]Br₃.